3.1.61 \(\int \frac {(a+c x^2)^{3/2}}{x (d+e x+f x^2)} \, dx\) [61]

3.1.61.1 Optimal result
3.1.61.2 Mathematica [C] (verified)
3.1.61.3 Rubi [A] (verified)
3.1.61.4 Maple [B] (verified)
3.1.61.5 Fricas [F(-1)]
3.1.61.6 Sympy [F]
3.1.61.7 Maxima [F]
3.1.61.8 Giac [F(-2)]
3.1.61.9 Mupad [F(-1)]

3.1.61.1 Optimal result

Integrand size = 27, antiderivative size = 496 \[ \int \frac {\left (a+c x^2\right )^{3/2}}{x \left (d+e x+f x^2\right )} \, dx=\frac {a \sqrt {a+c x^2}}{d}+\frac {(c d-a f) \sqrt {a+c x^2}}{d f}-\frac {c^{3/2} e \text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{f^2}-\frac {\left (2 e f \left (c^2 d^2-a^2 f^2\right )-\left (c^2 d e^2-f (c d-a f)^2\right ) \left (e-\sqrt {e^2-4 d f}\right )\right ) \text {arctanh}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}+\frac {\left (2 e f \left (c^2 d^2-a^2 f^2\right )-\left (c^2 d e^2-f (c d-a f)^2\right ) \left (e+\sqrt {e^2-4 d f}\right )\right ) \text {arctanh}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}}-\frac {a^{3/2} \text {arctanh}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d} \]

output
-c^(3/2)*e*arctanh(x*c^(1/2)/(c*x^2+a)^(1/2))/f^2-a^(3/2)*arctanh((c*x^2+a 
)^(1/2)/a^(1/2))/d+a*(c*x^2+a)^(1/2)/d+(-a*f+c*d)*(c*x^2+a)^(1/2)/d/f-1/2* 
arctanh(1/2*(2*a*f-c*x*(e-(-4*d*f+e^2)^(1/2)))*2^(1/2)/(c*x^2+a)^(1/2)/(2* 
a*f^2+c*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2)))^(1/2))*(2*e*f*(-a^2*f^2+c^2*d^2) 
-(c^2*d*e^2-f*(-a*f+c*d)^2)*(e-(-4*d*f+e^2)^(1/2)))/d/f^2*2^(1/2)/(-4*d*f+ 
e^2)^(1/2)/(2*a*f^2+c*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2)))^(1/2)+1/2*arctanh( 
1/2*(2*a*f-c*x*(e+(-4*d*f+e^2)^(1/2)))*2^(1/2)/(c*x^2+a)^(1/2)/(2*a*f^2+c* 
(e^2-2*d*f+e*(-4*d*f+e^2)^(1/2)))^(1/2))*(2*e*f*(-a^2*f^2+c^2*d^2)-(c^2*d* 
e^2-f*(-a*f+c*d)^2)*(e+(-4*d*f+e^2)^(1/2)))/d/f^2*2^(1/2)/(-4*d*f+e^2)^(1/ 
2)/(2*a*f^2+c*(e^2-2*d*f+e*(-4*d*f+e^2)^(1/2)))^(1/2)
 
3.1.61.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.55 (sec) , antiderivative size = 552, normalized size of antiderivative = 1.11 \[ \int \frac {\left (a+c x^2\right )^{3/2}}{x \left (d+e x+f x^2\right )} \, dx=\frac {c d f \sqrt {a+c x^2}+2 a^{3/2} f^2 \text {arctanh}\left (\frac {\sqrt {c} x-\sqrt {a+c x^2}}{\sqrt {a}}\right )+c^{3/2} d e \log \left (-\sqrt {c} x+\sqrt {a+c x^2}\right )+\text {RootSum}\left [a^2 f+2 a \sqrt {c} e \text {$\#$1}+4 c d \text {$\#$1}^2-2 a f \text {$\#$1}^2-2 \sqrt {c} e \text {$\#$1}^3+f \text {$\#$1}^4\&,\frac {-a c^2 d e^2 \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right )+a c^2 d^2 f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right )-2 a^2 c d f^2 \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right )+a^3 f^3 \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right )-2 c^{5/2} d^2 e \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}+2 a^2 \sqrt {c} e f^2 \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}+c^2 d e^2 \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2-c^2 d^2 f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2+2 a c d f^2 \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2-a^2 f^3 \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{a \sqrt {c} e+4 c d \text {$\#$1}-2 a f \text {$\#$1}-3 \sqrt {c} e \text {$\#$1}^2+2 f \text {$\#$1}^3}\&\right ]}{d f^2} \]

input
Integrate[(a + c*x^2)^(3/2)/(x*(d + e*x + f*x^2)),x]
 
output
(c*d*f*Sqrt[a + c*x^2] + 2*a^(3/2)*f^2*ArcTanh[(Sqrt[c]*x - Sqrt[a + c*x^2 
])/Sqrt[a]] + c^(3/2)*d*e*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2]] + RootSum[a^ 
2*f + 2*a*Sqrt[c]*e*#1 + 4*c*d*#1^2 - 2*a*f*#1^2 - 2*Sqrt[c]*e*#1^3 + f*#1 
^4 & , (-(a*c^2*d*e^2*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]) + a*c^2*d^ 
2*f*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1] - 2*a^2*c*d*f^2*Log[-(Sqrt[c] 
*x) + Sqrt[a + c*x^2] - #1] + a^3*f^3*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - 
 #1] - 2*c^(5/2)*d^2*e*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1 + 2*a^2 
*Sqrt[c]*e*f^2*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1 + c^2*d*e^2*Log 
[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1^2 - c^2*d^2*f*Log[-(Sqrt[c]*x) + 
Sqrt[a + c*x^2] - #1]*#1^2 + 2*a*c*d*f^2*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2 
] - #1]*#1^2 - a^2*f^3*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1^2)/(a*S 
qrt[c]*e + 4*c*d*#1 - 2*a*f*#1 - 3*Sqrt[c]*e*#1^2 + 2*f*#1^3) & ])/(d*f^2)
 
3.1.61.3 Rubi [A] (verified)

Time = 1.97 (sec) , antiderivative size = 496, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {7279, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+c x^2\right )^{3/2}}{x \left (d+e x+f x^2\right )} \, dx\)

\(\Big \downarrow \) 7279

\(\displaystyle \int \left (\frac {\left (a+c x^2\right )^{3/2} (-e-f x)}{d \left (d+e x+f x^2\right )}+\frac {\left (a+c x^2\right )^{3/2}}{d x}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {a^{3/2} \text {arctanh}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d}-\frac {\left (2 e f \left (c^2 d^2-a^2 f^2\right )-\left (e-\sqrt {e^2-4 d f}\right ) \left (c^2 d e^2-f (c d-a f)^2\right )\right ) \text {arctanh}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {\left (2 e f \left (c^2 d^2-a^2 f^2\right )-\left (\sqrt {e^2-4 d f}+e\right ) \left (c^2 d e^2-f (c d-a f)^2\right )\right ) \text {arctanh}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {c^{3/2} e \text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{f^2}+\frac {\sqrt {a+c x^2} (c d-a f)}{d f}+\frac {a \sqrt {a+c x^2}}{d}\)

input
Int[(a + c*x^2)^(3/2)/(x*(d + e*x + f*x^2)),x]
 
output
(a*Sqrt[a + c*x^2])/d + ((c*d - a*f)*Sqrt[a + c*x^2])/(d*f) - (c^(3/2)*e*A 
rcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]])/f^2 - ((2*e*f*(c^2*d^2 - a^2*f^2) - ( 
c^2*d*e^2 - f*(c*d - a*f)^2)*(e - Sqrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c*( 
e - Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[ 
e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*d*f^2*Sqrt[e^2 - 4*d*f]*Sqrt[2* 
a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]) + ((2*e*f*(c^2*d^2 - a^2*f 
^2) - (c^2*d*e^2 - f*(c*d - a*f)^2)*(e + Sqrt[e^2 - 4*d*f]))*ArcTanh[(2*a* 
f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + 
e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*d*f^2*Sqrt[e^2 - 4*d*f]* 
Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]) - (a^(3/2)*ArcTanh[ 
Sqrt[a + c*x^2]/Sqrt[a]])/d
 

3.1.61.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7279
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[ 
{v = RationalFunctionExpand[u/(a + b*x^n + c*x^(2*n)), x]}, Int[v, x] /; Su 
mQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
 
3.1.61.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2378\) vs. \(2(443)=886\).

Time = 0.65 (sec) , antiderivative size = 2379, normalized size of antiderivative = 4.80

method result size
default \(\text {Expression too large to display}\) \(2379\)

input
int((c*x^2+a)^(3/2)/x/(f*x^2+e*x+d),x,method=_RETURNVERBOSE)
 
output
-4*f/(-e+(-4*d*f+e^2)^(1/2))/(e+(-4*d*f+e^2)^(1/2))*(1/3*(c*x^2+a)^(3/2)+a 
*((c*x^2+a)^(1/2)-a^(1/2)*ln((2*a+2*a^(1/2)*(c*x^2+a)^(1/2))/x)))+2*f/(e+( 
-4*d*f+e^2)^(1/2))/(-4*d*f+e^2)^(1/2)*(1/3*((x+1/2*(e+(-4*d*f+e^2)^(1/2))/ 
f)^2*c-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*((- 
4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(3/2)-1/2*c*(e+(-4*d*f+e^ 
2)^(1/2))/f*(1/4*(2*c*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)-c*(e+(-4*d*f+e^2)^( 
1/2))/f)/c*((x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-c*(e+(-4*d*f+e^2)^(1/2))/ 
f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c 
*d*f+c*e^2)/f^2)^(1/2)+1/8*(2*c*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c* 
e^2)/f^2-c^2*(e+(-4*d*f+e^2)^(1/2))^2/f^2)/c^(3/2)*ln((-1/2*c*(e+(-4*d*f+e 
^2)^(1/2))/f+c*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))/c^(1/2)+((x+1/2*(e+(-4*d* 
f+e^2)^(1/2))/f)^2*c-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/ 
2))/f)+1/2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)))+1/2 
*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2*(1/2*(4*(x+1/2*(e+(-4* 
d*f+e^2)^(1/2))/f)^2*c-4*c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2) 
^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)-1/2 
*c^(1/2)*(e+(-4*d*f+e^2)^(1/2))/f*ln((-1/2*c*(e+(-4*d*f+e^2)^(1/2))/f+c*(x 
+1/2*(e+(-4*d*f+e^2)^(1/2))/f))/c^(1/2)+((x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^ 
2*c-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*((-4*d 
*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))-1/2*((-4*d*f+e^2)^...
 
3.1.61.5 Fricas [F(-1)]

Timed out. \[ \int \frac {\left (a+c x^2\right )^{3/2}}{x \left (d+e x+f x^2\right )} \, dx=\text {Timed out} \]

input
integrate((c*x^2+a)^(3/2)/x/(f*x^2+e*x+d),x, algorithm="fricas")
 
output
Timed out
 
3.1.61.6 Sympy [F]

\[ \int \frac {\left (a+c x^2\right )^{3/2}}{x \left (d+e x+f x^2\right )} \, dx=\int \frac {\left (a + c x^{2}\right )^{\frac {3}{2}}}{x \left (d + e x + f x^{2}\right )}\, dx \]

input
integrate((c*x**2+a)**(3/2)/x/(f*x**2+e*x+d),x)
 
output
Integral((a + c*x**2)**(3/2)/(x*(d + e*x + f*x**2)), x)
 
3.1.61.7 Maxima [F]

\[ \int \frac {\left (a+c x^2\right )^{3/2}}{x \left (d+e x+f x^2\right )} \, dx=\int { \frac {{\left (c x^{2} + a\right )}^{\frac {3}{2}}}{{\left (f x^{2} + e x + d\right )} x} \,d x } \]

input
integrate((c*x^2+a)^(3/2)/x/(f*x^2+e*x+d),x, algorithm="maxima")
 
output
integrate((c*x^2 + a)^(3/2)/((f*x^2 + e*x + d)*x), x)
 
3.1.61.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\left (a+c x^2\right )^{3/2}}{x \left (d+e x+f x^2\right )} \, dx=\text {Exception raised: TypeError} \]

input
integrate((c*x^2+a)^(3/2)/x/(f*x^2+e*x+d),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:index.cc index_m i_lex_is_greater E 
rror: Bad Argument Value
 
3.1.61.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+c x^2\right )^{3/2}}{x \left (d+e x+f x^2\right )} \, dx=\int \frac {{\left (c\,x^2+a\right )}^{3/2}}{x\,\left (f\,x^2+e\,x+d\right )} \,d x \]

input
int((a + c*x^2)^(3/2)/(x*(d + e*x + f*x^2)),x)
 
output
int((a + c*x^2)^(3/2)/(x*(d + e*x + f*x^2)), x)